
AFRL-SN-WP-TP-2003-108

PhotoMesa: A ZOOMABLE IMAGE
BROWSER USING QUANTUM
TREEMAPS AND BUBBLEMAPS

Benjamin B. Bederson

FEBRUARY 2003

2001 ACM

This work is copyrighted. The United States has for itself and others acting on its behalf
an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of
use is subject to copyright restrictions.

SENSORS DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7318

Approved for public release; distribution is unlimited.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204,
Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

February 2003 Conference Paper Preprint
5a. CONTRACT NUMBER

F33615-97-1-1018
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

PhotoMesa: A ZOOMABLE IMAGE BROWSER USING QUANTUM
TREEMAPS AND BUBBLEMAPS

5c. PROGRAM ELEMENT NUMBER
62301E

5d. PROJECT NUMBER

ARPA
5e. TASK NUMBER

AA

6. AUTHOR(S)

Benjamin B. Bederson

5f. WORK UNIT NUMBER

 1P
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Maryland
Human-Computer Interaction Laboratory
Computer Science Department, Institute for Advanced Computer Studies
College Park, MD 20742

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL/SNAR

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Sensors Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7318

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

AFRL-SN-WP-TP-2003-108

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Preprint submitted to UIST 2001, ACM Symposium on User Interface Software and Technology, CHI Letters, 3(2), pp. 71-80.

2001 ACM. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up,
nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions.

See other published work in the DTIC collection under contract number F33615-97-1-1018.

This report contains color.
14. ABSTRACT (Maximum 200 Words)
PhotoMesa is a zoomable image browser that uses a novel treemap algorithm to present large numbers of images grouped by
directory, or other available metadata. It uses a new interaction technique for zoomable user interfaces designed for novices and
family use that makes it straightforward to navigate through the space of images, and impossible to get lost.
PhotoMesa groups images using one of two new algorithms that lay out groups of objects in a 2D space-filling manner. Quantum
treemaps are designed for laying out images or other objects of indivisible (quantum) size. They are a variation on existing treemap
algorithms in that they guarantee that every generated rectangle will have a width and height that are an integral multiple of an input
object size. Bubblemaps also fill space with groups of quantum-sized objects, but generate non-rectangular blobs, and utilize space
more efficiently.
15. SUBJECT TERMS

Zoomable User Interfaces (ZUIs), Treemaps, Image Browsers, Animation, Graphics, Jazz

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

16 Jason Johnson
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-5668 x4047
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

PhotoMesa: A Zoomable Image Browser Using
Quantum Treemaps and Bubblemaps

Benjamin B. Bederson

Human-Computer Interaction Laboratory
Computer Science Department, Institute for Advanced Computer Studies

University of Maryland, College Park, MD 20742
+1 301 405-2764

bederson@cs.umd.edu
http://www.cs.umd.edu/hcil/photomesa

ABSTRACT
PhotoMesa is a zoomable image browser that uses a novel
treemap algorithm to present large numbers of images
grouped by directory, or other available metadata. It uses a
new interaction technique for zoomable user interfaces
designed for novices and family use that makes it
straightforward to navigate through the space of images,
and impossible to get lost.
PhotoMesa groups images using one of two new algorithms
that lay out groups of objects in a 2D space-filling manner.
Quantum treemaps are designed for laying out images or
other objects of indivisible (quantum) size. They are a
variation on existing treemap algorithms in that they
guarantee that every generated rectangle will have a width
and height that are an integral multiple of an input object
size. Bubblemaps also fill space with groups of quantum-
sized objects, but generate non-rectangular blobs, and
utilize space more efficiently.
Keywords
Zoomable User Interfaces (ZUIs), Treemaps, Image
Browsers, Animation, Graphics, Jazz.
INTRODUCTION
There has been much work in recent years on information
retrieval systems for multimedia, including systems
concentrating on images. However, these systems focus on
specifying queries or presenting results in a manner that
helps users quickly find an item of interest. For image
searches, in particular, there has been relatively little work
on new interfaces, visualizations, and interaction
techniques that support users in browsing images.
Image browsing is important for a number of reasons. First
of all, no matter what information retrieval system is being
used, the user has to browse the results of the search. It is
certainly important to build query systems that help users
get results that are as close to what is wanted as possible.
But there will always be images that need to be browsed
visually to make the final pick.

Figure 1: Screen snapshot of PhotoMesa with over 500
images in 17 groups.

Most image browsing systems present the images as a grid
of thumbnails that the user can scroll through with a
vertical scrollbar, and see a high resolution version of the
image with some mouse interaction. There are also a few
alternative designs, such as manually constructed digital
photo albums, and one commercial zoomable image
browser.
A second reason for needing new image browsers is more
subtle, and was actually my primary motivation for doing
the present work. Sometimes, people browse images just
for the pleasure of looking at those images, and they often
do it with other people. This is especially true for personal
photos. As people take more digital family pictures, we
need better tools to support users in home settings as they
look at those pictures together on a computer screen.
Looking at home photos has a lot of overlap with
traditional retrieval systems. People still want to be able to
find photos of particular people and events, etc. However,
they are less likely to be time pressured to find a particular
photo, and more likely to be interested in serendipity – that
is, finding photos they weren’t looking for [6].

http://www.cs.umd.edu/hcil/photomesa
wallacjr
1

I found I needed better tools to look at pictures with my
two-year-old daughter. I did not want to spend the time to
make custom “albums”. In addition, I found using
traditional software with a grid of thumbnails, scrollbars,
and popup viewer windows unpleasant in this context. I
wanted to concentrate on the images – and more
importantly, as I was looking at the photos with my
daughter, it was crucial that she be an active part of the
interaction, and not just a passive bystander.
Motivated by the need of a tool that would support
browsing of images with my family, I started to investigate
techniques for presenting collections of images or other
visual data. While much work has been done on
visualizing complex datasets, surprisingly few techniques
are available for presenting images. My goal was to come
up with a mechanism that would be able to lay out groups
of images automatically in a way that would offer a simple
interface to browse while giving access to a large set of
images and their context.
To this end, I developed PhotoMesa, a zoomable image
browser that organizes images in a two-dimensional grid,
where images with a shared attribute (such as directory
location, nearness in time, or a shared word in their
filename) are grouped together (Figure 1). It uses zooming
and simple interaction techniques to make navigation
straight-forward, and to eliminate the possibility of getting
lost. In building PhotoMesa, I kept the following design
goals in mind:

• Simple to use (interaction should focus on images,
there should be no overhead to get started, and any
layout should be entirely automatic)

• Work well for family-use settings, encouraging
shared co-present use

• Support collections of photos, and use screen
space efficiently

To lay out the groups of images automatically, I ended up
developing two new algorithms, called quantum treemaps
and bubblemaps. Quantum treemaps are a variation on
existing treemap algorithms [21]. Treemaps are a family of
algorithms that partition two-dimensional space into
regions that have an area proportional to a list of requested
areas. The problem with existing treemap algorithms is
that they return areas of arbitrary aspect ratios. A
requirement of photo display is that the regions that show
groups of photos must have dimensions that are integer
multiples of the dimensions of the photos – that is, they
must be sized to contain quantum, or indivisible contents.
The use of treemaps to display images is the first known
use of treemaps to display visual content, such as images,
rather then just using the size and color of the rectangles to
visualize two numerical attributes of a dataset.
The bubblemap algorithm generates non-rectangular
groups. The groups are generated with a grid-based
recursive fill algorithm. They fill all the cells in a grid

leaving almost no unused space, and generate groups of
images that are approximately rectangular or circular.
This paper describes PhotoMesa and the quantum treemap
and bubblemap layout algorithms. All the software
described in this paper is written in Java 2, is fully
functioning as described, and is available at
http://www.cs.umd.edu/hcil/photomesa.
RELATED WORK
As mentioned previously, the standard way to let users
browse a set of images is with a grid of thumbnails with a
vertical scrollbar. Clicking on an image thumbnail usually
brings up a window with the high-resolution version of the
image. The user then has to manage the open windows
manually, and close them when they are no longer needed.
One good commercial example of this approach is ACDSee
which offers a clean interface and fast interaction [1].
This approach has been extended by a research group at the
University of Maryland developing PhotoFinder [16, 22].
It lets users organize photos into “collections” which are
displayed with a representative image that the user selects.
The interface first shows collections, and selecting a
collection displays a traditional grid of thumbnails.
PhotoFinder avoids the problem of window management,
by displaying high-resolution photos in a pane within the
interface. The PhotoFinder project concentrates on
interfaces for managing and searching a database of meta
information, but the browsing interface is essentially a
polished traditional approach.
Document Lens is a technique that uses 2D fisheye
distortion to present a grid of thumbnails of documents
with a mechanism to zoom one document up to a readable
size in place [18]. Document Lens, however, presents just
a single collection of objects at a time.
Others have looked into automated algorithms for
clustering semantically related information, and presenting
the results visually. Hascoët-Zizi and Pediotakis built such
a system for a digital library retrieval system, showing the
available thesaurus as well as results of searches [14]. Platt
has built a system for automatically clustering photos, and
extracting representative photos for each cluster [17].
Several groups have investigated applications of images for
story telling or sharing in the home. The Personal Digital
Historian project at MERL is building a circular display on
a tabletop intended for several people to interact with
images together. The design includes search by several
kinds of metadata, but the mechanism for interacting with
many images was not described in detail [20]. This is an
example of support for co-present use which is a theme
described in some of the author’s prior work [23].
A group at Ricoh is building a dedicated portable story-
telling device based on the construction of sequences of
images. It has a dedicated hardware interface for selecting
sequences of images which can then be annotated with
audio, and played back when telling the story associated
with those images [6].

wallacjr
2

For a pure software approach, we and others have built
Zoomable User Interfaces (ZUIs) for image browsing.
ZUIs are interfaces that present information on a large flat
space where the user can smoothly zoom into the space to
see information in more detail, or zoom out to get an
overview. ZUIs have the potential advantages that they are
easy to comprehend, and they give a consistent and easy to
use interface for getting an overview of the information,
and seeing more detail.
An earlier ZUI-based image browser was ZIB (Zoomable
Image Browser) [11]. ZIB combined a zoomable
presentation of a grid of images with a search engine (that
searched metadata), and a history mechanism to access
previous searches. However, ZIB provided access to only a
single group of images, and used manual zooming which
was difficult to use.
The approach started in ZIB was continued in a new project
that is creating an interface for elementary school-aged
children to find multimedia information in a digital library
[12]. This project, called SearchKids, presents visual
results in a zoomable interface with a simpler interaction
mechanism that PhotoMesa is based on.
Another ZUI-based image browser is currently available
commercially by Canon, and is called ZoomBrowser EX
[2]. The Canon browser presents a hierarchy of images
(either manually constructed, or imported from a disk
hierarchy) with containment. The top level shows a grid of
squares, each of which contain a grid of image thumbnails
and/or smaller squares that show more thumbnails, etc. It
uses a layout very similar to what we used earlier in the
Pad++ directory browser [8]. This layout has the
disadvantage that all directories are the same size, and the
contents are scaled to fit so that images in large directories
are scaled small so as to be unreadable.
The interaction is to click on a square, and the contents of
the square are smoothly zoomed into. Clicking on an
image brings up a traditional high-resolution image viewer
in a separate window. Clicking on a special zoom-out
button zooms out to the next level in the hierarchy. There
is also a magnification mode which zooms in a fixed
amount each click, rather than zooming into the next level
of the hierarchy.
PHOTOMESA
PhotoMesa allows the user to view multiple directories of
images in a zoomable environment, and uses a set of simple
navigation mechanisms to move through the space of
images. It also supports clustering of images by metadata
available from the file system. It requires only a set of
images on disk, and does not require the user to add any
metadata, or manipulate the images at all before browsing,
thus making it easy to get started with existing images.
PhotoMesa is written entirely in Java 2, and is built using
the Jazz framework for Zoomable User Interfaces [9]. The
name PhotoMesa derives from the Spanish word mesa
which means table, but is commonly used in the US

southwestern states to describe the natural volcanic
plateaus which are high and have flat tops. Standing atop a
mesa, you can see the entire valley below, much as you can
see an overview of many photos in PhotoMesa.
To start using PhotoMesa, a user opens a directory, or a set
of directories, and PhotoMesa lays out the directories of
images in a space-filling manner as shown in Figure 1,
using a quantum treemap to create one rectangular group
for each directory. Even though a hierarchical directory
structure is read in, the images are displayed in a flattened,
non-hierarchical manner. The rationale for this is that users
looking at images are primarily interested in groups of
photos, not at the structure of the groups. In addition, the
interface for presenting and managing hierarchies of groups
would become more complicated, and simplicity was one
of the goals of the PhotoMesa. However, this is a design
characteristic of PhotoMesa, not of the of the treemap
algorithms which can be applied hierarchically.
As the user moves the mouse, the group the mouse is over
is highlighted, and the label is shown in full (it may have
been clipped if there wasn’t room for it). Then when the
user clicks, the view is smoothly zoomed in to that group.
Now, a highlight showing a set of images under the mouse
lets the user know which images will be focused on when
the mouse is clicked again. The number of images
highlighted is chosen to be enough to fill about half of the
screen so that the user will be able to drill down quickly to
a full-resolution single image. At any point, the user can
press the right button (or Enter key) to zoom out to the
previous magnification. In addition, the user can double-
click on an image to zoom all the way into that image and
avoid intermediate zoom levels, or the user can double-
right click to zoom all the way out to the top level.
The user can also press alt-left/right arrows to move back
and forth in their history of views. Or, they can press the
arrow keys to pan up, down, left or right. When zoomed all
the way into a full-resolution image, the arrow keys stay
within the current group of images, wrapping as necessary.
When zoomed out so more than one image is visible, the
arrow keys move across groups to let the user explore the
entire space.
At all times, if the cursor is left to dwell over an image
thumbnail for a short time, that thumbnail is zoomed up
until it is 200 pixels wide overlaying the other, unchanged
images (Figure 1). This preview is immediately removed
whenever the mouse is moved.
While it is not necessary for users to do any authoring to
browse images with PhotoMesa, they are allowed to change
the color of image groups (although group background
colors are assigned by default). This can make it easier to
make sense of the large display of images since the colored
areas can act as landmarks which are known to be effective
navigation aids [15].
PhotoMesa supports drag-and-drop to let users directly
export images to email, or other applications. Since

wallacjr
3

emailing photos is a significant use, PhotoMesa
automatically reduces the resolution and quality of images
when they are dragged out of PhotoMesa. This resolution
reduction is controllable through a preference panel. This
eliminates the need to go through a special processing step
when emailing images.
While the support of browsing is the primary goal of
PhotoMesa, it is also sometimes desirable to find images in
a specific group, and it can be difficult to scan labels in a
2D space. So, a search pane is available that shows all the
directories in order. Mousing over a label highlights the
corresponding group of images, and clicking on a label
zooms into that group. In addition, the search pane has a
search box where users can search for images by words in
their filename.
After PhotoMesa was built, and we started using it to
browse directories of images, I realized that another way of
thinking about what PhotoMesa was doing was presenting
a large set of images clustered by directory. So I then
added support for clustering by other data. Since I didn’t
want to require users to add metadata, PhotoMesa uses
whatever data is already available in the file system, which
is just file date and name. If a user selects view by year,
PhotoMesa uses the file date to group all the currently
opened photos by year, and creates a layout with one region
per year. It does the same thing for viewing by month.
Another clustering technique takes advantage of the fact
that people sometimes give meaningful filenames to their
images, often with several words per image to describe the
contents of the image (Figure 2). If a user selects view by
“filename words”, it parses the filenames of all of the open
images, and creates one cluster for each unique word in a
filename (as tokenized with all the standard delimiters and
where filename extensions and numeric tokens are
ignored). Thus, if an image has 3 words in its filename
(such as “ben-eats-cake”), then that image will appear in 3
clusters (one for “ben”, one for “eats”, and one for “cake”).
PhotoMesa computes multiple sized thumbnails for each
image, and dynamically loads the appropriate one. In this
manner, it maintains good performance, even with large
numbers of images. The thumbnails are created the first
time an image is loaded, and cached in a special directory
managed by PhotoMesa.

Figure 2: A directory of images (left), and the same
images grouped by filename words (right).

The design of PhotoMesa presents an inherent difference
compared to traditional scrolling thumbnail grids. The
traditional approach has the advantage that it is searchable
by navigating in one dimension (through vertical scrolling),
while PhotoMesa requires navigation in two dimensions,
which is typically harder for users. However, PhotoMesa
has the advantage that the user can easily get an overview
by zooming out. Through this interaction, the user can
control the trade-off between the number of images shown
and their resolution. This difference is a direct effect of the
zooming nature of PhotoMesa. If a vertically oriented grid
of thumbnails were zoomed out, the space would be mostly
unused on either side of the linear list, and the display
space would thus be largely wasted. Thus, it seems that a
2D zoomable interface and 1D displays of data are
inherently incompatible.
USE OF PHOTOMESA
I have used PhotoMesa regularly with my two year old
daughter for several months. We load in all of our family
pictures (Figure 1) and sit together in front of a laptop
computer. She will point at an area and I click and zoom in
to it. I keep zooming in as she points at areas until we get
all the way in to a single photo. I then zoom out one level,
and if she asks to see another photo, I zoom into it.
Otherwise, I zoom out another level until she sees
something she is interested in. In this fashion, we look at
the photos together, and she is able to stay in control and
maintains a high level of interest. The zooming and
smooth animation make it so that she is clearly able to
follow what is going on, even though I operate the mouse.
In addition, over 9,000 people have downloaded
PhotoMesa from the web. While this is obviously not a
controlled study, it has been informative nevertheless. I
have received very positive feedback, sometimes
describing use scenarios I did not originally envision. One
designer used it as a “disk mapper” to find out what was on
her disk. Another put the software with photos on a CD
and mailed it to family and friends. Others have envisioned
embedding it in a range of applications, from supporting
hobbyist aquarium logging to web-based photo sharing.
Perhaps most importantly, several people reported they find
it ideal to use with their families – supporting my original
design goal.
QUANTUM TREEMAPS
In the course of developing PhotoMesa, I ran into a
significant problem. I needed an automatic way to lay out
groups of images in a visually simple manner that filled all
the available space. I started to solve this by looking into
treemap algorithms. Treemaps are a family of algorithms
that are space-filling partitions of a two-dimensional area.
Treemaps take as input, a list of n numbers and a rectangle.
They partition the area into n rectangles, one per input
number. The rectangles are guaranteed to fill the input
rectangle, and each rectangle is proportional in area to a
number on the input list. Treemaps are designed to be
applied hierarchically, so any given resulting rectangle can
itself contain a treemap, and so on, recursively.

wallacjr
4

In order to build PhotoMesa, I had to extend the treemap
algorithms to accommodate fixed size images. To
understand this, let us start by looking at existing treemap
algorithms.
There are two desirable properties that treemap algorithms
can have: generated rectangles with aspect ratios close to 1
(i.e., rectangles that are close to squares), and order.
Here, and for the rest of the paper, aspect ratio is defined as
max((width / height), (height / width)), so that an
aspect ratio of 1 is perfectly square, and aspect ratios larger
than one are more rectangular. Rectangles with aspect
ratios close to 1 are desirable because, generally speaking,
they are more visually attractive. In addition, humans seem
to be able to estimate the area of a square more accurately
than a skinny rectangle, and one of the goals of treemaps is
to use the area of each rectangle to present some useful
attribute.
I define order here to mean that a treemap algorithm is
ordered if the rectangles it generates are laid out in a spatial
sequence that corresponds to the input sequence. Not all
treemap algorithms are ordered, and order is important
since it is easier for users to find specific items in ordered
displays. Rodden has showed the importance of order in
image browsing [19]. In addition, ordered displays make it
easier to track items if they change over time since in an
ordered display, each item will stay in approximately the
same place on the screen.
Until recently, there were no algorithms that provided both
properties.
Treemap Related Work
The original treemap algorithm by Shneiderman [21] uses a
simple “slice and dice” approach. It divides the input
rectangle into a single horizontal or vertical list of
rectangles – each one typically being quite skinny. If the
algorithm is applied recursively, the sub-rectangle would
be split in the opposite orientation as the parent. This
algorithm generates ordered rectangles, but they typically
have extreme aspect ratios.
An important ensuing treemap algorithm, called squarified
treemaps, gave up on ordering, but created rectangles with
smaller aspect ratios [10]. Squarified treemaps work by
recursively dividing the space in two, and laying out some
of the rectangle in one part, and the rest of the rectangles in
the other part, where the list of rectangles is split based on
optimizing the resulting aspect ratios. A variation of this
algorithm was independently developed for SmartMoney’s
MarketMap applet [4]. Recently, Shneiderman and
Wattenberg introduced ordered treemaps [5] which offer a
compromise solution where the resulting rectangles are
ordered, and somewhat squarified, but do not have as good
aspect ratios as those generated by squarified treemaps.
Other approaches to space-filling algorithms have been
considered but they typically do not have all the nice
properties of treemaps, such as that by Harel and Yashchin

[13] which does not assign the size of the rectangles to any
independent variable.
Treemaps have been applied to a number of domains, from
visualizing hard disk usage [3] to the stock market [4].
However, in every current usage of treemaps to date, they
are used to visualize a two-dimensional dataset where
typically, one dimension is mapped to the area of the
rectangles (as computed by the treemap algorithm), and the
other dimension is mapped to the color of the rectangle.
Then, a label is placed in the rectangles which are large
enough to accommodate them, and the user can interact
with the treemap to get more information about the objects
depicted by the rectangles.
Surprisingly enough, there are not any published uses of
treemaps where other information is placed in the
rectangles. PhotoMesa appears to be the first application to
put images within the area of each treemap rectangle.
There is a good reason why treemaps have not been used in
this manner before. This is because while treemaps
guarantee that the area of each generated rectangle is
proportional to an input number, they do not make any
promise about the aspect ratio of the rectangles. Some
treemap algorithms (such as squarified treemaps) do
generate rectangles with better aspect ratios, but the
rectangles can have any aspect ratio. While this is fine for
general purpose visualizations, it is not appropriate for
laying out images because images have fixed aspect ratios,
and they do not fit well in rectangles with inappropriate
aspect ratios.
Let us look at applying existing treemap algorithms to
laying out fixed size objects, such as images. For now, let
us assume without loss of generality that the images are all
square. We will see later that this does not affect layout
issues. Given a list of groups of images to lay out, the
obvious input to the treemap algorithm is the number of
images in each group. The treemap algorithm will generate
a list of rectangles, that each need the corresponding
images to be laid out within.
For each rectangle and group of images, the first step is to
decide on the dimensions of a grid with which to lay out
the images in the rectangle. Given the aspect ratio of the
rectangle, we compute the number of rows and columns
that best fit the images.
The resulting grid may have more cells than there are
images, but will not have any empty rows or columns. This
layout, however, is not guaranteed to fit in the rectangle.
For example, consider a rectangle that was computed to
hold a single image. It will have an area of 1.0, but could
be long and skinny, perhaps with a width of 10.0 and a
height of 0.1. The obvious solution is to scale down the
images just enough to fit in the bounds of the rectangle.
Herein lies the problem. Since each group of images has to
fit in to a separate rectangle, each group of images will
have to potentially be scaled down. This will result in each
group of images being a different size. Furthermore, since

wallacjr
5

the rectangles are arbitrarily sized and positioned, and the
images are scaled, the resulting groups of images will not
align with each other in a visually attractive way.
It is standard graphic design practice to align content in a
way that makes it easy for the eye to quickly scan different
areas. If each group of images is a different size and they
are not aligned, this will make the resulting layout less
attractive, and may make it slower for a user to quickly
scan. See Figure 4 for the result of laying out a simple
sequence of images using the ordered treemap and quantum
treemap algorithms to see the difference in overall layout.
Note how with the ordered treemap, group #4 consisting of
a single image is scaled much smaller than the other
images. With the quantum treemap algorithm, all images
are the same size, and all images are aligned on a single
grid across all the groups.
Ordered Treemaps
To understand the quantum treemap algorithm, it is
necessary to first understand the basics of the ordered
treemap algorithm because the former is a direct
modification of the latter.
The ordered treemap algorithm, as with all treemap
algorithms, take as input and produces output:
Input L1…Ln An ordered sequence of numbers.
 Box A box to lay out the rectangles within.
Output R1…Rn An ordered sequence of rectangles that

completely fill Box, and where the area
of Ri is proportional to Li.

The algorithm is similar to QuickSort. It chooses a pivot,
LP, and places it in Box. It then recursively lays out
L1…LP-1 on one side of the pivot, and LP+1…Ln on the other
side of the pivot. Figure 3 shows the basic visual strategy
for a horizontal layout. A corresponding approach is used
for a vertical layout.
The ordered treemap algorithm is described in detail in [5],
and is summarized here.

1. If n == 1, then return a rectangle R = Box and stop.
2. Choose a pivot element, LP. Pivot selection

strategies include picking the middle element or
the largest one.

3. Calculate R1 so that its height fills Box, and so that
its width is large enough to contain LA = L1…LP-1.

4. Split LP+1…Ln into two sublists, LB and LC that will
be laid out in R2 and R3. Calculate where the
splitting point is so that RP has an aspect ratio
closest to 1.

5. Calculate RP, R2 and R3. This is performed by
using the ratio between the size of the
corresponding lists, and breaking up the available
space by the same ratios.

6. Recursively apply the ordered treemap algorithm
to LA in R1, LB in R2, and LC in R3.

This algorithm results in rectangles that are fairly square,
and are ordered approximately left to right (or top to
bottom in a vertically oriented box).
Quantum Treemap Algorithm
The goal of the quantum treemap algorithm is similar to
other treemap algorithms, but instead of generating
rectangles of arbitrary aspect ratios, it generates rectangles
with widths and heights that are integer multiples of a
given elemental size. In this manner, it always generates
rectangles in which a grid of elements of the same size can
be laid out. Furthermore, all the grids of elements will
align perfectly with rows and columns of elements running
across the entire series of rectangles. It is this basic
element size that can not be made any smaller that led to
the name of quantum treemaps.
The quantum treemap (QT) algorithm is based directly on
the ordered treemap (OT) algorithm. However, the basic
approach could be applied to any other treemap algorithm.
QT’s input and output are similar to those of OT, but
instead of returning a set of rectangles that precisely fill the
specified input Box, it generates a set of rectangles that
only approximate the input Box. Because there is some
wasted space, the resulting set of rectangles are usually
larger than Box, but have close to the same aspect ratio. In
addition, QT takes an additional input parameter which is
the aspect ratio of the elements to be laid out in Box.
QT starts in exactly the same manner as OT, picking a
pivot, subdividing the space, and recursively applying the
algorithm to each sub-space. It works in the same way
until step 1 stops the recursion.
At this point (step 1), rather then just unwinding the
recursive stack, it adjusts the computed rectangle by
modifying its dimensions, making it big enough for
precisely the specified number of elements.

Figure 4: The result of laying out a sequence of 4
groups of elements (of size 3, 20, 20, 1) using ordered
treemap (left) and quantum treemap (right)

Figure 3: Basic layout strategy of the ordered
treemap algorithm. The pivot is layed out in RP, and
L1…LP-1 are layed out in R1 while LP+1…Ln are layed
out in R2 and R3.

R1 RP

R2

R3

wallacjr
6

Then, as the recursion unwinds, the caller must
accommodate the generated rectangles which may not fit
precisely into the box that was asked for. This is the tricky
part, and is captured in a modified version of step 6. Since
the rectangles generated by the recursive call may be bigger
or smaller in either dimension than was asked for, the
rectangles from the other regions must be moved so they
don’t overlap, and possibly grown so they align nicely with
neighboring rectangles. As an example, see Figure 4
(right). Rectangle #4 was originally computed to have
dimensions (1x1), but since Rectangle #3 was much taller,
Rectangle #4 was stretched to be 4 units tall to match the
height of Rectangle #3. Similarly, Rectangle #1 was
stretched to match the height of Rectangle #2. The new
algorithmic steps are stated here:

new 1. If n == 1, then compute a rectangle R that
contains exactly L quantums in a grid arrangement
that has an aspect ratio as close as possible to that
of Box and stop.

new 6. Recursively apply the ordered treemap
algorithm to LA in R1, LB in R2, and LC in R3.

new 6a. Translate the rectangles in RP, R2, and R3 to
avoid overlapping R1 or each other.

new 6b. Even out the rectangles in the sub-regions in
the following manner. Make sure that RP and R2
have the same width. Make sure that RP and R2
together have the same height as R1. Make sure
that R3 has the same height as R1. Each of these
evening steps can be accomplished similarly by
finding if one of the regions is too small. Then if
it is not wide enough, add the extra amount to the
width of the rectangles in that region that touch
the right boundary of the region. Do the analogous
action to rectangles not tall enough.

Element Aspect Ratio Issues
QT assumes that all elements that will be laid out in the
rectangles produced by QT are the same aspect ratio, and
that aspect ratio is an input parameter to QT. It turns out,
however, that it is not necessary to modify the internal
structure of QT to accommodate the element’s aspect ratio.
Instead, the dimensions of the starting box can simply be
stretched by the inverse of the element aspect ratio.
Growing Horizontally or Vertically
In step 1, the requested rectangle may be grown to
accommodate the quantum element size. There is a basic
question of whether to grow this rectangle horizontally or
vertically. The simple answer is just to grow in the
direction that results in a rectangle that most closely
matches the aspect ratio of the original rectangle.
However, the algorithm as a whole produces better layouts
if it always grows horizontally (or vertically for layout
boxes that are oriented vertically).
The issue here is somewhat subtle, but is related to step 6b
where the rectangles are evened. If, for example,
rectangles in R3 are made taller, than all of R1 and R2 will

Regular Quad Snake
Figure 5: The result of applying the three stopping
conditions to a sequence of 4 groups of elements (of
size 3, 20, 20, 1).

have to made taller as well to match R3. If instead, the
rectangles in R3 are made wider, than only the other
rectangles in R3 will need to be made wider, and the
rectangles in R1 and R2 can be left alone.
In general, the evening aspect of the QT algorithm remains
somewhat problematic. While it works well for most data
sets, it occasionally yields undesirable layouts due to too
much wasted space. This can happen when one region
ends up growing a fair amount to accommodate data that
doesn’t happen to fit the starting rectangles, and then the
other regions have to be grown to match. When these other
regions are grown to match, the resulting rectangles are
bigger than necessary, and there is wasted space. This
doesn’t seem to be a problem for datasets unless they
contain many regions with a very small number of elements
(< 10). In practice, it has not been a significant problem for
the real image datasets I have viewed, although sometimes
there is a little more wasted space than I would like.
Stopping Condition Improvements
Changing the stopping conditions and offering special
layouts for a small number of special cases can produce
substantially better total results. The new stopping
conditions apply equally to QT as well as to OT.
The improvement is because the layout of rectangles
depicted in Figure 5 (left) is not necessarily the one with
the smallest aspect ratios. In addition, it generates a layout
that is somewhat difficult to parse visually because the eye
has to move in 3 directions to focus on the 4 rectangles
(vertically from #1 to #2, horizontally from #2 to #3, and
then vertically from #3 to #4).
The layout can be improved, and visual readability by
offering two alternative layouts. The first produces a
“quad” of (2x2) rectangles. The second produces a
“snake” layout with all 4 rectangles laid out sequentially –
either horizontally or vertically. The snake layout can be
equally well applied to 2, 3, or more rectangles.
PhotoMesa applied it up to 5 rectangles. Figure 5 shows
the result of laying out a sequence of 4 groups of elements
using the three strategies. The new algorithmic step is:

new 1a. If n == 4, then first try the regular layout by
continuing and letting the recursion get down to
the bottom level

wallacjr
7

new 1b. If n == 4, then layout the 4 groups in a quad.
Split Box into two with either a horizontal or
vertical split (depending on the orientation of Box)
based on the number of elements in the 4 groups.
Then, split each of the remaining boxes in two
with the opposite orientation based on the number
of elements in those 2 groups.

new 1c. If n == 4, then layout the 4 groups in a snake
by dividing Box into 4 sub boxes (horizontally or
vertically, depending on the orientation of Box),
based on the number of elements in the 4 groups.

new 1d. Compute the aspect ratios and wasted space
of the 4 resulting rectangles from steps 1a, 1b, and
1c, and use the layout with the best overall results.

Since no one layout strategy always gives the best result for
all input data, for 5 or fewer rectangles, PhotoMesa
computes layouts using all strategies (original, quad, and
snake) and picks the best one. In practice, this strategy
produces layouts with substantially squarer aspect ratios.

wallacjr
8

Figure 8: Bubblemap layouts of 10 groups of up to 200
rectangles. Rectangular (left) and circular (right).
becomes unattractive and wasteful. While it may be
possible to improve the quantum treemap algorithm, it is
impossible to lay out images in a rectangle without
sometimes leaving unused space. An alternative approach
is to give up on the idea that the space must be divided into
rectangles, and instead allow more complex shapes.
Bubblemap is a new algorithm that lays out groups of
quantum-sized objects in an ordered layout with no wasted
space per group, although there is some wasted space for
the entire area. The groups of objects can be created in
different shapes, such as rectangular or circular, but the
groups of objects only approximate those shapes, rather
than define them exactly. Figure 8 shows a rectangular and
a circular bubblemap layout of 10 groups of up to 200
rectangles per group. The bubblemap algorithm has also
been integrated into PhotoMesa as a user-selectable layout
option. Figure 9 shows the bubblemap algorithm applied to
a set of images in PhotoMesa. There is no wasted space,
but the regions have arbitrary shapes.
A more sophisticated approach to laying out related images
in a grid has been pursued by Basalaj with his Proximity
Grid algorithm [7]. It takes a set of objects with a high-
dimensional set of relationships and generates a grid layout
of those objects so that similar objects will be near each
other on the grid. Bubblemaps, on the other hand, are
much simpler and assumes the input is pre-clustered. They
keep the clusters of images together, rather than optimizing
an n-dimensional set of relationships.
The bubblemap algorithm is completely different than the
treemap algorithm. Rather than subdividing rectangles, it
is based on a standard pixel-based bucket fill algorithm. It
works by filling cells in a grid, keeping track of which cells
get assigned to images from which group. It fills the cells
one group at a time. By using different algorithms to select
the next cell to fill, the shape of the groups can be
controlled. The basic algorithm runs in O(n) time for n
images. The basic algorithm follows:
Input: L1...Ln, Aspect Ratio

1. Compute the size of the overall grid based on total
number of images to layout, and the desired
resulting aspect ratio.

2. Create a grid of size computed from step 1, and set
each cell to the value UNASSIGNED.

3. For each group of images, Li, call the fill
algorithm, starting at step 4, and then stop.

4. Find the starting point to fill by looking for the
first UNASSIGNED cell in the grid (in left-right,
top-bottom order). Initialize a list of cells, called

wallacjr
9

CONCLUSION
This paper presents PhotoMesa, a zoomable image
browser, and two new algorithms for laying out groups of
images or other fixed-size visual objects. The primary
innovations are: 1) a simplified set of interactions for
navigating through a set of objects in a zoomable user
interface; and 2) algorithms to lay out fixed-size objects,
such as images, in two-dimensional space, automatically
creating groups for related objects.
By bringing together the aforementioned innovations with
existing zoomable user interface technology, PhotoMesa
offers a significant advance in the ability to comfortably
browse large numbers of images. Based on its initial
popularity and enthusiastic feedback, PhotoMesa appears to
have satisfied its initial design goals of being simple to use
in a family setting, requiring no setup time, and naturally
supporting co-present use.
ACKNOWLEDGEMENTS
I appreciate the feedback on PhotoMesa by many HCIL
members. In particular, thanks to Jesse Grosjean who
suggested the approach taken in the bubblemap algorithm.
In addition, I thank Ben Shneiderman for suggesting the
interactive textual list of groups, to Allison Druin for
suggesting the ability to color groups, to Jon Meyer and
Catherine Plaisant for advise on the visual design of
PhotoMesa, to Matthias Mayer for first suggesting I try to
display several directories of images at once, and to Mark
Stefik from Xerox PARC for suggesting the magnified
preview images. Finally, I appreciate Susanne Jul’s
excellent editorial comments on this paper.
REFERENCES
[1] ACDSee (2001). http://www.acdsystems.com/english/

products/acdsee/acdsee-node.htm.
[2] Canon ZoomBrowser (2001). http://www.powershot.com/

powershot2/software/ps_pc_view.html.
[3] DiskMapper (2001). http://www.miclog.com/dmdesc.htm.
[4] SmartMoney MarketMap (2001). http://www.smartmoney.

com/marketmap/.
[5] Baker, M. J., & Eick, S. G. (1995). Space-Filling Software

Visualization. Journal of Visual Languages and
Computing, 6, pp. 119-133.

[6] Balabanovic, M., Chu, L. L., & Wolff, G. J. (2000).
Storytelling With Digital Photographs. In Proceedings of
Human Factors in Computing Systems (CHI 2000) ACM
Press, pp. 564-571.

[7] Basalaj, W. (2000). Proximity Visualization of Abstract
Data. Doctoral dissertation, University of Cambridge,
Cambridge, England.

[8] Bederson, B. B., Hollan, J. D., Perlin, K., Meyer, J.,
Bacon, D., & Furnas, G. W. (1996). Pad++: A Zoomable
Graphical Sketchpad for Exploring Alternate Interface
Physics. Journal of Visual Languages and Computing, 7,
pp. 3-31.

[9] Bederson, B. B., Meyer, J., & Good, L. (2000). Jazz: An
Extensible Zoomable User Interface Graphics Toolkit in

Java. In Proceedings of User Interface and Software
Technology (UIST 2000) ACM Press, pp. 171-180.

[10] Bruls, M., Huizing, K., & van Wijk, J. J. (2000).
Squarified Treemaps. In Proceedings of Joint
Eurographics and IEEE TCVG Symposium on
Visualization (TCVG 2000) IEEE Press, pp. 33-42.

[11] Combs, T. T. A., & Bederson, B. B. (1999). Does
Zooming Improve Image Browsing? In Proceedings of
Digital Library (DL 99) New York: ACM, pp. 130-137.

[12] Druin, A., Bederson, B. B., Hourcade, J. P., Sherman, L.,
Revelle, G., Platner, M., & Weng, S. (2001). Designing a
Digital Library for Young Children: An Intergenerational
Partnership. In Proceedings of Joint Conference on Digital
Libraries (JCDL 2001) ACM Press, pp. pp. 398-405.

[13] Harel, D., & Yashchin, G. (2000). An Algorithm for Blob
Hierarchy Layout. In Proceedings of Advanced Visual
Interfaces (AVI 2000) ACM Press, pp. 29-40.

[14] Hascoët-Zizi, M., & Pediotakis, N. (1996). Visual
Relevance Analysis. In Proceedings of International
Conference on Digital Libraries (DL 96) ACM Press, pp.
54-62.

[15] Jul, S., & Furnas, G. W. (1998). Critical Zones in Desert
Fog: Aids to Multiscale Navigation. In Proceedings of
User Interface and Software Technology (UIST 98) ACM
Press, pp. 97-106.

[16] Kang, H., & Shneiderman, B. (2000). Visualization
Methods for Personal Photo Collections Browsing and
Searching in the PhotoFinder. In Proceedings of IEEE
International Conference on Multimedia and Expo
(ICME2000) New York: IEEE, pp. 1539-1542.

[17] Platt, J. (2000). AutoAlbum: Clustering Digital
Photographs Using Probabalistic Model Merging. In
Proceedings of IEEE Workshop on Content-based Access
of Image and Video Libraries (CBAIVL-2000) IEEE
Press,

[18] Robertson, G. G., & Mackinlay, J. D. (1993). The
Document Lens. In Proceedings of User Interface and
Software Technology (UIST 93) ACM Press, pp. 101-108.

[19] Rodden, K., Basalaj, W., Sinclair, D., & Wood, K. (2001).
Does Organisation by Similarity Assist Image Browsing.
In Proceedings of Human Factors in Computing Systems
(CHI 2001) ACM Press, pp. 190-197.

[20] Shen, C., Moghaddam, B., Lesh, N., & Beardsley, P.
(2001). Personal Digital Historian: User Interface Design.
In Proceedings of Extended Abstracts of Human Factors
in Computing Systems (CHI 2001) ACM Press,

[21] Shneiderman, B. (1992). Tree Visualization With
Treemaps: A 2-D Space-Filling Approach. ACM
Transactions on Graphics, 11(1), pp. 92-99.

[22] Shneiderman, B., & Kang, H. (2000). Direct Annotation:
A Drag-and-Drop Strategy for Labeling Photos. In
Proceedings of IEEE Conference on Information
Visualization (IV2000) New York: IEEE, pp. 88-98.

[23] Stewart, J., Bederson, B. B., & Druin, A. (1999). Single
Display Groupware: A Model for Co-Present
Collaboration. In Proceedings of Human Factors in
Computing Systems (CHI 99) ACM Press, pp. 286-293.

wallacjr
10

	UIST 2001 - PhotoMesa.pdf
	ABSTRACT
	Keywords

	INTRODUCTION
	RELATED WORK
	PHOTOMESA
	USE OF PHOTOMESA
	QUANTUM TREEMAPS
	Treemap Related Work
	Ordered Treemaps
	Input
	Box

	Quantum Treemap Algorithm
	Element Aspect Ratio Issues
	Growing Horizontally or Vertically
	Stopping Condition Improvements
	Pivot Selection Improvement
	Quantum Treemap Analysis

	BUBBLE MAPS
	FUTURE WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

